
Entangled states in stochastic mechanics

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys. A: Math. Gen. 33 5833

(http://iopscience.iop.org/0305-4470/33/33/304)

Download details:

IP Address: 171.66.16.123

The article was downloaded on 02/06/2010 at 08:30

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/33/33
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 33 (2000) 5833–5848. Printed in the UK PII: S0305-4470(00)11277-6

Entangled states in stochastic mechanics

Nicola Cufaro Petroni† and Laura M Morato‡
† Dipartimento Interateneo di Fisica dell’Università e del Politecnico di Bari, INFN Sezione di
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Abstract. An axiomatization of the core part of stochastic mechanics (SM) is proposed and
this scheme is discussed as a hidden variables theory. We work out in detail an example with
entanglement and rigorously prove that SM and quantum mechanics agree in predicting all the
observed correlations at different times.

1. Introduction

This paper is devoted to a discussion of Nelson’s stochastic mechanics (SM) from the standpoint
of the foundations of quantum mechanics (QM). For the time being we will limit ourselves
to the part of the theory, here called representative, reduced to the Nelson map, which, as it
is known, associates a diffusion process to every solution of the Schrödinger equation. This
structure will be explicitly redefined as a hidden variables theory in QM for the case of a finite
number of spinless particles. In fact the representative part is only the germ of the theory
introduced by Nelson in 1966 [1, 2] and subsequently developed in the 1970s and 1980s, not
without discussions and polemics. We refer the reader to [3–5] for extensive reviews and large
bibliography and to [6] for a survey on applications and new perspectives. A first general
analysis of SM from the point of view of the foundations of QM can be found in [7]. The
dynamical part of the theory will be revisited in forthcoming papers. We also stress that this
work is not related to the problem of giving a description, within SM, of the mechanism which
produces the wave collapse. We refer the reader to [8, 9] for some attempts in this direction
as far as the microscopic system under observation is considered and to [10] for a general
approach, within a class of hidden variables theory which also contains SM, which takes into
account both the microscpic system and the apparatus.

Our aim is essentially to provide a sound logical and mathematical basis for discussing
entanglement and the various kinds of nonlocality, a subject which is almost ignored in the
literature on SM. It is also important to remark that the analysis of examples with entangled
states greatly contributed to convince the founder of the theory [11] to reject SM as a physical
theory.

The paper is organized as follows: in section 2 we introduce the Nelson map and formulate
the basic axiom SM1 of SM. This part somehow exploits mathematical results on the existence
of diffusions with singular drift [12, 13] which were not available at the first formulation
of the theory by E Nelson in 1966 and covers the case when the wavefunctions presents
nodal surfaces [14]. In section 3 we introduce a definition of Nelson’s hidden variables
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which is suitable for the discussion on determinism in section 5 and we carefully discuss
conditioning. Section 4 is devoted to the rigorous solution of a problem proposed by Nelson
in [11], concerning the calculus of the correlations at different times for position measurements
on two separated and non-interacting subsystems which are initially prepared in an entangled
state. We prove that a plain application of SM1 and quantum mechanical axioms does not lead
to any contradiction and in particular that the oscillating quantum mechanical correlations are
exactly reproduced in SM by the correct stochastic description of the evolution in time for the
mixture which is produced by the measurement at time zero. We conclude the paper by briefly
discussing locality properties and the concept of determinism.

2. The Nelson map

For the sake of clearness and in order to establish the notations we will first of all recall, without
pretending any completeness, the axioms of QM which will be assumed and possibly discussed
in this paper. We will denote by italic capital letters A,X , . . . the physical observables of a
given system, by capital letters A,X, . . . the results of their measurements and by Â, X̂, . . .
the corresponding self-adjoint operators in the suitable Hilbert space.

QM1 With every physical system S is associated a Hilbert space H; the states of S are
represented by the normalized vectors ψ of H, and such a description is as complete
as possible.

QM2 The observable quantities are represented by self-adjoint operators on H.
QM3 The time evolution of a state ψ0 is ruled by the Schrödinger equation

ψ(t) = e−iĤ t/h̄ψ0 (1)

where Ĥ is the Hamiltonian operator.

Next we separately recall the fundamental axioms concerning measurements.

M1 Given any statistical ensemble E of copies of the system S, the measurement of a discrete
observable A for every element of E divides E in subensembles Ei , one for every possible
value ai of A. An immediately repeated measurement of A on Ei gives ai with certainty.

M2 If all the elements of E are in the state ψ , then the probability of obtaining ai as the result
of a measurement of A on a randomly chosen element of E (for short ‘on E’) is given by

Pψ(A = ai) = ‖π̂iψ‖2 (2)

where π̂i represents the projection on the invariant subspace Mi corresponding to ai .
M3 If for a single element of E in ψ the result of the measurement is ai , then its state after the

measurement is

ϕi = π̂iψ

‖π̂iψ‖ . (3)

This transformation is instantaneous†.
M4 If X̂ is a self-adjoint operator on H with continuous spectrum, denoting by F̂X its resolution

of identity so that

X̂ =
∫ +∞

−∞
x dF̂X (x) (4)

and putting �F̂X(x) = F̂X(x + �x) − F̂X(x) for a given an interval (x, x + �x] on the
real line, then if all the elements of E are in the state ψ , the probability that on E the result

† This last statement is understood by the authors as an oversimplification.
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of the Yes/No experiment designed to verify whether X lies in (x, x + �x] or not is Yes
is given by

Pψ(X ∈ (x, x + �x]) = ‖�F̂X(x)ψ‖. (5)

For the systems such that the answer is Yes the initial state ψ is suddenly changed into
the new normalized state

ϕ�x = �F̂X(x)ψ

‖�F̂X(x)ψ‖ . (6)

Since (when no measurement is performed) the state ψ(t) is uniquely dermined by ψ0

through (1), we will often adopt in the following the shorthand notations

Pψ0(A(t) = ai) Pψ0(X(t) ∈ (x, x + �x]) (7)

to indicate the probabilities (2) and (5) when E is in the pure state ψ(t) produced by the
equation (1). We will also make use in this paper of the symbols

Pψ0(A(t) = ai |B(s) = bj )

Pψ0(X1(t) ∈ (x, x + �x]|X2(s) ∈ (x ′, x ′ + �x ′]) (0 � s � t)
(8)

with the following meaning: if for a given ensemble initially preparated in the state ψ0 a
selective measurement of B (X2) with result bj (result in (x, x + �x]) is performed and
the corresponding subensemble evolves only by the effect of dynamics up to time t when a
non-selective measurement of A (X1) is performed, the quantities denoted by (8) represent
the probability that for a randomly chosen element in this subensemble the result of the
measurement is ai (in (x ′, x ′ + �x ′]).

Axioms M2 and M3 can also be synthesized by saying that the statistical operator
associated with E , namely, Û = π̂(ψ), is suddenly changed by a measurement of A into
the new one Ŵ = ∑

i Pψ(A = ai)π̂i , and that for every element of Ei the state ψ is suddenly
changed into ϕi . Moreover an immediate consequence of the quantum mechanical axioms is
that the expected value of any observable X (both discrete and continuous) on an ensemble E
prepared in the state ψ , denoted by 〈X〉ψ , satisfies the equality

〈X〉ψ = (ψ, X̂ψ). (9)

We will consider, in this paper, only systems composed of N spinless particles in a flat
space and subjected to scalar potentials. Actually SM covers all general situations which have
classical analogues and the spin can be incorporated into the theory by the beautiful works
by Dankel [15] and Dohrn and Guerra [16]. However, the simplest case mentioned above
is sufficient to discuss SM as a hidden variables theory. If now mi (with i = 1, . . . , d with
d = 3N ) are the masses of the considered particles†, the dynamics for every ψ0 of the Hilbert
space H = L2(Rd) will be given by the Schrödinger equation

ih̄∂tψ = −
d∑
i=1

h̄2

2mi

∂2
i ψ + Vψ ψ(0) = ψ0 (10)

with V denoting a scalar potential. The representative part of SM can now be introduced as
follows.

Definition (Nelson’s map). With every normalized solution ψ : [0,+∞)× Rd → C of (10)
the Nelson map associates a Markov diffusion ξ(t) taking values in the configuration space
Rd and such that

† Of course the masses associated with different coordinates of the same particle will be coincident: we do not specify
that in the notation just to keep it as simple as possible.
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(1) the random variable ξ0 = ξ(0) is distributed according to the probability density
ρ0 = |ψ0|2;

(2) the transition probability density of the diffusion p(x, t |x0, 0) is the solution of the
Kolmogorov equation

∂tp =
d∑
i=1

[
−∂i(bψi p) +

h̄

2mi

∂2
i p

]
p(x, 0|x0, 0) = δ(x − x0) (11)

where the components of the velocity field are calculated from ψ as

b
ψ

i = h̄

mi

[
Re

(
∂iψ

ψ

)
+ Im

(
∂iψ

ψ

)]
. (12)

Notice that, denoting by ρ(t) the probability density of ξ(t), and averaging (11) over the
initial conditions with respect to ρ0, we also obtain the familiar Fokker–Planck equation for
the probability density, that is

∂tρ =
d∑
i=1

[
−∂i(bψi ρ) +

h̄

2mi

∂2
i ρ

]
ρ(0) = |ψ0|2. (13)

Proposition. For every t � 0 we have ρ(x, t) = |ψ(x, t)|2 with x ∈ Rd .

Proof. [1, 2] Representing the wavefunction as ψ = |ψ | exp(iS/h̄) and taking the real part
of (10) we have

∂t |ψ |2 = −
d∑
i=1

∂i(v
ψ

i |ψ |2) v
ψ

i = h̄

mi

Im

(
∂iψ

ψ

)
. (14)

Now, by using (12), a straightforward calculation shows that |ψ |2 satisfies (13). �
Under weak regularity assumptions which cover all the physically interesting cases and in

particular that with unbounded drifts due to possible nodes of the wavefunction (see [12] for
the basic references and [13] for further improvements), ξ(t) is proved to satisfy a stochastic
differential equation in a weak sense; namely we can claim that there exists a d-dimensional
Brownian motion W (t) (independent of ξ(0)) with covariance matrix σij = h̄δij /mi such that

dξ (t) = bψ(ξ(t), t) dt + dW (t) (15)

or, in the integral notation,

ξ(t) = ξ0 +
∫ t

0
bψ(ξ(s), s) ds + W (t). (16)

Let us now consider the space C0 of all the continuous functions from [0,+∞) to Rd

endowed with its Borel σ -algebra of subsets B(C0). Then, by the Markov property of ξ(t), the
initial density |ψ0|2 and the transition density p uniquely determine a probability measure on
(C0,B(C0)). We stress that such a measure is uniquely determined by the solution ψ(x, t) of
the Schrödinger equation for the given initial condition ψ(0) = ψ0. As a consequence, once
the interaction is given by assigning V , this measure depends uniquely on ψ0: we shall denote
it by Pψ0 and we will have for every Borel subset B of Rd

Pψ0(ξ(t) ∈ B) =
∫
B

|ψ(x, t)|2 dx (17)

where of course (ξ(t) ∈ B) denotes the subset of the realization of the diffusion such that the
configurational trajectory visits B at time t .
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In the simplest case where d = 1, denoting by X the position observable, from the previous
proposition and from M4 we have that on E initially prepared in ψ0

Pψ0(X(t) ∈ (x, x + �x]) = ‖�F̂X(x)ψ(t)‖2 = Pψ0(ξ(t) ∈ (x, x + �x]) (18)

for every x,�x ∈ R, where we exploit the notations specified in (7). Notice that we also have,
denoting by Eψ0 the mathematical expectation with respect to the Nelson measure Pψ0 ,

〈X〉ψ(t) = Eψ0 [ξ(t)]. (19)

We are now in a position to give a precise formulation of the basic axiom of the
representative part of the SM for a system of N spinless particles:

SM1 The time evolution (produced by a dynamics without measurements) of the configuration
of an N -spinless-particle system is represented by a curve in C0 (called a configurational
trajectory or sample path). If a statistical ensemble E is initially prepared in the pure
state ψ0 ∈ L2(Rd) the trajectories of each element of E are distributed according to the
probability measure Pψ0 , namely that representing a diffusion process with values in Rd ,
having initial probability density |ψ0|2 and transition density p satisfying the Kolmogorov
equation (11).

Whether the configurational trajectories, and the trajectories of the individual particles in the
three-dimensional space, can be considered as having some physical meaning or not is a
problem which will be dealt with in section 5. We can notice that SM1 is stated in a form
which avoids the difficulty arising when the wavefunction has nodal surfaces. As it is known
in this case one can prove [14] that a particle cannot cross such surfaces, so the ‘probability’
that a single particle visits certain regions in the physical space is equal to zero also if the
square modulus of the wavefunction is positive there. The difficulty arises by not specifying
the meaning of ‘probability’: SM1 explicitly states that such a probability refers to a statistical
experiment where a particle is randomly chosen in the homogeneous ensemble E initially
prepared in the state ψ0, so that (17) remains true.

3. Hidden variables and conditioning

SM in its representative part shares with Bohm mechanics several aspects: in particular the
relevance of position observables and the introduction of trajectories. As it is known [17]
in Bohm mechanics the hidden variable is given by the initial position of all the particles
constituting the system:

λB = x0 = {r1(0), r2(0), . . . , rN(0)} ∈ R3N (20)

with ri (t) denoting the position of the ith particle in the physical three-dimensional space at
time t . The configuration at time t is then uniquely determined by the solution of the ordinary
differential equation in R3N :

ẋ(t) = vψ(x(t), t) (21)

where the components of vψ are defined in (14), or equivalently

x(t) = x0 +
∫ t

0
vψ(x(s), s) ds. (22)

The analogous equations in SM are (15) and (16). As a consequence in SM the trajectory
depends also on the realization of the 3N -dimensional Brownian motion† W (t), which appears

† Note that if ψ(t) is not factorized in the product of functions of individual ri at every time t , then every component
of both vψ and bψ will depend in general on the position of all the particles. As a consequence the motion of the
individual constituents of the system will not in general be Markovian.



5838 N C Petroni and L M Morato

in (15). If now w ∈ C0 is a function from [0,+∞) into R3N denoting a generic realization of
the process W (t), then the new hidden variable will be

λN = {x0,w} x0 ∈ R3N w ∈ C0. (23)

This way of defining Nelson’s hidden variables slightly differs from that adopted by other
authors, who prefer to consider as hidden variable the trajectory. We introduce this definition
in order to stress that Nelson’s hidden variables can be interpreted as both deterministic and
intrinsically stochastic, as we will discuss in 5.

We have seen that by the axiom SM1 the probability that a position measurement on E
initially prepared in ψ0 gives a result in (x, x +�x] is by construction in complete agreement
with that predicted by the QM and that this remains true also in the case where nodal surfaces are
present, thanks to the well defined role in our axiomatization of the homogeneous ensembles.
However, what about the correlations? This is not a trivial point since in [11] the founder
of the theory presented an interesting example of a compound system which seemed to lead
to a contradiction between SM and QM as far as correlations at different times in composed
systems are concerned. To the authors knowledge this example has never been rediscussed in
the literature.

Clearly SM1 only gives a representation (by adding hidden variables) of the evolution
in time of the initial state ψ0 by the Schrödinger equation (10). As a consequence the
measurements must be ruled by QM measurement axioms M1–M4. Since in the past this point
has often been misunderstood, we discuss it in detail within our axiomatization (a qualitative
discussion can be found in [7] and a conceptually correct treatment of repeated measurements
on the same system is given in [18]). Consider a statistical ensemble E prepared in the state
ψ0, and let ψ(t) be its evolution at the time t > 0 when a measurement of a discrete non-
degenerate observable A is performed. If ai and ϕi denote respectively the eigenvalues and
eigenvectors of Â, a non-selective measurement will divide E into homogeneous subensembles
Ei such that every system belonging to Ei is instantaneously put in the state ϕi , which then
evolves according to the Schrödinger equation. Thus if we consider a single system in E its
trajectory must be constructed by the stochastic differential equation (15) with the drift bψ in
[0, t), and by a new stochastic differential equation (15) with the new drift bϕi in [t,+∞).

A similar evolution takes place if the observable A is replaced by a position observable X :
in particular the quantity Eψ0(ξ(0)ξ(t)) could possibly reproduce on E initially prepared in ψ0

the corresponding average of the product of measured values of X at times 0 and t only if the
measurement at time 0 were non-demolitive. In fact, if the measurement at time 0 changes the
state of our system (according to M3 and M4), it would be wrong to expect that Eψ0(ξ(0)ξ(t))
reproduces the observed correlations since, by its definition, it refers just to a situation where
ψ0 evolves undisturbed through (1). Remark that, at variance with QM, in SM the calculation
of mathematical correlations is possible either by assuming a wavepacket collapse at time 0,
or by letting the initial state evolve undisturbed through (1)). A strong ‘realistic’ philosophical
attitude could emphasize the meaning of Eψ0(ξ(0)ξ(t)) by giving to ξ(t) the meaning of the
‘true’ value of the configuration at time t and then to Eψ0(ξ(0)ξ(t)) that of a ‘virtual true
correlation’, which avoids the effects of quantum measurements. Some discussion on this
point is shifted to section 5. We stress that at this level we are just checking the consistency of
axioms, where only results of measurements performed in actual experiments are mentioned.

In a similar way we can discuss the problems concerning the conditioning. Let us consider
the probability that X ∈ (x ′, x ′ + �x ′] at time t if X ∈ (x, x + �x] at time s on an ensemble
E prepared in ψ0 at time 0 (with 0 < s < t). If ϕ�x is the state produced by the measurement
at time s as in (6), then we have, recalling (8),

Pψ0(X(t) ∈ (x ′, x ′ + �x ′]|X(s) ∈ (x, x + �x])
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= Pϕ�x (X(t − s) ∈ (x ′, x ′ + �x ′])
= Pϕ�x (ξ(t − s) ∈ (x ′, x ′ + �x ′])
�= Pψ0(ξ(t) ∈ (x ′, x ′ + �x ′]|ξ(s) ∈ (x, x + �x]). (24)

Remark that, while the first member in (24) must be understood as stated for (8) in section 2,
the last member is calculated by letting ψ0 evolve following an undisturbed Schrödinger
evolution (1). In the language of the SM community (see for example [18]) it is sometimes
said that mathematical conditioning is not physical conditioning: in the author’s opinion
this is a good way of synthesizing this point (for further discussion on this subject see for
example [8, 19]).

The origin of this non-classical phenomenon is of course due to the peculiarity of the
quantum measurement and ultimately rests on the uncertainty principle. However one could
conjecture that if we consider a system composed by two non-interacting subsystems and we
perform position measurements both on the first at time s and on the second at time t > s,
then the mathematical correlations at times t and s of the two components of the undisturbed
Nelson process should in fact reproduce the quantum ones. This is not true in general due to
the puzzling effects of entanglement. We will study in the subsequent sections an interesting
example of entanglement proposed by Nelson [2] and we will show that also in this case SM1
does not contradict the basic quantum mechanical axioms.

4. Correlations at different times in compound systems

We will consider a quantum system made up of two subsystems 1 and 2 so that the total
Hilbert space H will be the product of two component subspaces H = H1 ⊗ H2. We
will also suppose that the systems 1 and 2 do not interact so that the total Hamiltonian is
Ĥ = Ĥ1 ⊗ Î2 + Î1 ⊗ Ĥ2 = Ĥ1 + Ĥ2 with [Ĥ1, Ĥ2] = [Ĥ1 ⊗ Î2, Î1 ⊗ Ĥ2] = 0 (we will often
write Ĥ1 in place of Ĥ1 ⊗ Î2 and Ĥ2 in place of Î1 ⊗ Ĥ2). Moreover let Â and B̂ be two
operators representing the observables A and B respectively for the systems 1 and 2 and such
that [Â⊗ Î2, Î1 ⊗ B̂] = [Â, B̂] = 0. We will assume by now that all our operators have purely
discrete, non-degenerate spectra. We put

Ĥ1ϕj = Wjϕj Ĥ2ψk = Ekψk Âαl = alαl B̂βm = bmβm (25)

where ϕj , αl ∈ H1 and ψk, βm ∈ H2. We will also adopt the notations ϕjψk = ϕj ⊗ ψk ∈ H
and αlβm = αl ⊗ βm ∈ H.

The time evolution of the system can be accounted for in the Schrödinger picture (SP):
for a given / ∈ H, with /(0) = / we have

/(t) = e−iĤ t/h̄/ (26)

and in particular we obtain

e−iĤ2t/h̄/ =
∑
j,k

(ϕjψk,/)e
−iEkt/h̄ϕjψk. (27)

Our aim is to calculate the correlation of two quantum observables at different times for a given
initial state / ∈ H: to do that we must go through three steps: first of all since

/(0) = / =
∑
l,m

(αlβm,/)αlβm (28)

a measurement of A at t = 0 gives the result al with a probability

P/(A(0) = al) =
∑
m

|(αlβm,/)|2 (29)
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and as a consequence / collapses into a mixture of the factorized states

/al =
∑

m(αlβm,/)αlβm√∑
m |(αlβm,/)|2

l = 1, 2, . . . (30)

each with a probability (29). Next we let every /al evolve in time so that from (26) and (30)
we have

/al (t) = e−iĤ t/h̄/al =
∑

m(αlβm,/)
∑

r,s(ϕr , αl)(ψs, βm)ϕrψse−i(Wr+Es)t/h̄√∑
m |(αlβm,/)|2

=
(∑

m

(αlβm,/)
∑
r,s

(ϕr , αl)(ψs, βm)e
−i(Wr+Es)t/h̄

∑
l′,m′

(αl′ , ϕr)(βm′ , ψs)αl′βm′

)

×
{√∑

m

|(αlβm,/)|2
}−1

. (31)

Finally we measure B at time t and we obtain the outcome bm′ with a conditional probability
in the sense of (8)

P/(B(t) = bm′ |A(0) = al)

=
∑

l′ |
∑

m(αlβm,/)
∑

r,s(ϕr , αl)(ψs, βm)e−i(Wr+Es)t/h̄(αl′ , ϕr)(βm′ , ψs)|2∑
m |(αlβm,/)|2 .

(32)

Now, since [Â(0), B̂(t)] = 0, we can adopt the usual formulae of classical probability to obtain
the joint probabilities, so that the required correlation will be

R/
AB(t) =

∑
l,m′

albm′P/(B(t) = bm′ |A(0) = al)P/(A(0) = al)

=
∑
l,m′

albm′
∑
l′

∣∣∣∣∑
m

(αlβm,/)
∑
r,s

×(ϕr , αl)(ψs, βm)e
−i(Wr+Es)t/h̄(αl′ , ϕr)(βm′ , ψs)

∣∣∣∣
2

. (33)

By developing the square module and by taking into account the usual closure relations∑
m

(ψs, βm)(βm,ψq) = (ψs, ψq) = δs,q
∑
n

(ϕk, αn)(αn, ϕp) = (ϕk, ϕp) = δk,p (34)

and so on, we obtain

R/
AB(t) =

∑
j,k

∑
p,q

(/, ϕjψk)(ϕpψq,/)
∑
l

(ϕj , αl)al(αl, ϕp)

×
∑
m′
(ψk, βm′)bm′(βm′ , ψq)e

−i(Eq−Ek)t/h̄

=
∑
j,k

∑
p,q

(/, ϕjψk)(ϕpψq,/)e
−i(Eq−Ek)t/h̄(ϕj , Âϕp)(ψk, B̂ψq). (35)

It is apparent that such an object cannot be immediately calculated as a quantum expected value
by a rule similar to (9) since two different states are involved. However, one immediately sees
that (35) can be read in the Heisenberg picture as

R/
AB(t) = (/, Â(0)B̂(t)/). (36)

Let now A and B be substituted by the (one-dimensional) position observables X1 and X2

respectively of 1 and 2, and let us consider the (two-component) Nelson process η(t) =
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(ξ1(t), ξ2(t)) associated with the undisturbed (namely free of demolitive measurements)
evolution of /: can we expect the corresponding E/(ξ1(0)ξ2(t)) to coincide with the
correlation R/

12(t) calculated in a way similar to (35)? A ‘classical’ way of reasoning would
apparently lead to an affirmative answer since the systems 1 and 2 are uncoupled and hence
no influence would be expected on the outcomes of a measurement on 2 at time t by any
measurement on 1 at the time 0, but thanks to the possible presence of entangled states this is
only partially true in QM. In fact we know [20] that the marginal probabilities for separated
measurements on 2 are not affected by measurements on 1. However, we also know from
Bell’s work [21] that the joint probabilities for the outcomes of separated measurements on 1
and 2 are more sensitive. Thus, since E/(ξ1(0)ξ2(t)) would correspond to a situation which is
free of demolitive measurements it should not necessarily be supposed to be equal to the QM
correlations R/

12(t) calculated as in (35).
To investigate this point let us consider, following [11], a couple of quantum dynamically

uncoupled harmonic oscillators with equal masses and elastic constants with total Hamiltonian
Ĥ = Ĥ1 + Ĥ2 where

Ĥ1 = P̂ 2
1

2m
+
mω2

2
X̂2

1 Ĥ2 = P̂ 2
2

2m
+
mω2

2
X̂2

2 . (37)

Eigenvalues and eigenfuncions of Ĥ1 and Ĥ2 are very well known [22]:

Ek = Wk = (k + 1
2 )h̄ω ϕk(x) = ψk(x) = NkQk(αx)e

−α2x2/2

k = 0, 1, 2, . . .
(38)

where

α =
√
mω

h̄
Nk =

√
α√
π2kk!

Qk(y) = (−1)key
2 dk

dyk
e−y2

. (39)

The correlation will now be evaluated for an initial state / whose wavefunction is chosen as

/(x) =
√
Ce−x·Ax/4 (40)

where x = (x1, x2) and

C = 1

2πσ1σ2

√
1 − r2

A = R
−1 = 1

σ 2
1 σ

2
2 (1 − r2)

(
σ 2

2 −rσ1σ2

−rσ1σ2 σ 2
1

)
(41)

while of course we have

〈X1〉/ = 〈X2〉/ = 0 R =
( 〈X2

1〉/ 〈X1X2〉/
〈X1X2〉/ 〈X2

2〉/
)

=
(

σ 2
1 rσ1σ2

rσ1σ2 σ 2
2

)
. (42)

This means that the two oscillators are normally distributed and statistically correlated (while
dynamically independent) at time t = 0 and that their initial correlation is R/

12(0) = rσ1σ2, a
feature characteristic of the so-called entangled states.

We expect of course that, in analogy with the discrete case, also for this compound system
the same result is obtained by working in SP, after applying M4, or by flatly rewriting (36)
for the two continuous observables X1 and X2. We stress that, while the coincidence is of
course still expected, the compact expression of the type (36) does not come too directly from
M4 since some limiting procedure is needed. We will treat this point in detail since both QM
axioms and SM1 are formulated in the SP.

Let us first give the result using an expression analogous to (36). Since

(ϕj , X̂1ϕp) = (ψj , X̂2ψp) = 1

α

(
δj+1,p

√
j + 1

2
+ δj−1,p

√
j

2

)
(43)
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a standard calculation yields, recalling (35),

(/, X̂1(0)X̂2(t)/) =
∑
j,k

∑
p,q

(/, ϕjψk)(ϕpψq,/)e
−i(Eq−Ek)t/h̄

×(ϕj , X̂1ϕp)(ψk, X̂2ψq) = λ cosωt (44)

where the constant λ can be easily calculated from λ = R/
12(0) = 〈X1X2〉/ = rσ1σ2, so we

finally have

(/, X̂1(0)X̂2(t)/) = rσ1σ2 cosωt. (45)

To restart in the SP, let us now consider two partitions of the real line (ai, ai + �ai], i ∈ N

and (bj , bj + �bj ], j ∈ N . A non-selective measurement of X1 at time 0 designed to check
whether Yes or No X1(0) ∈ (ai, ai +�ai], i ∈ N , will produce a mixture of states of the type

/�ai = (�F̂1(ai)⊗ Î2)/

‖(�F̂1(ai)⊗ Î2)/‖ = �F̂1(ai)/

‖�F̂1(ai)/‖ . (46)

We will suppress the indices i and j in most of the following. After a Hamiltonian time
evolution

/�a(t) = e−iĤ t/h̄/�a = e−iĤ t/h̄�F̂1(a)/

‖�F̂1(a)/‖ (47)

we perform a measurement of X2 at time t and we find X2 ∈ (b, b + �b] with a conditional
probability (in the sense of (8))

P/(X2(t) ∈ (b, b + �b] | X1(0) ∈ (a, a + �a])

= P/�a
(X2(t) ∈ (b, b + �b])

= ‖�F̂2(b)/�a(t)‖2

= ‖�F̂2(b)e−iĤ t/h̄�F̂1(a)/‖2

‖�F̂1(a)/‖2
. (48)

Since X̂1 and X̂2 commute we can also calculate the joint probability as

P/(X2(t) ∈ (b, b + �b] | X1(0) ∈ (a, a + �a])P/(X1(0) ∈ (a, a + �a])

= ‖�F̂2(b)e
−iĤ t/h̄�F̂1(a)/‖2. (49)

From the definition of our operators we have now

‖�F̂2(b)e
−iĤ t/h̄�F̂1(a)/‖2

= (�F̂2(b)e
−iĤ t/h̄�F̂1(a)/,�F̂2(b)e

−iĤ t/h̄�F̂1(a)/)

= (e−iĤ2t/h̄/,�F̂1(a)�F̂2(b)e
−iĤ2t/h̄/)

=
(∑

jk

e−iEkt/h̄(ϕjψk,/)ϕjψk,�F̂1(a)�F̂2(b)
∑
pq

e−iEqt/h̄(ϕpψq,/)ϕpψq

)

=
∑
jk

∑
pq

e−i(Eq−Ek)t/h̄(/, ϕjψk)(ϕpψq,/)(ϕj ,�F̂1(a)ϕp)(ψk,�F̂2(b)ψq)

(50)

and since for �a → 0 and �b → 0 we can write

(ϕj ,�F̂1(a)ϕp) =
∫ a+�a

a

ϕ∗
j (x)ϕp(x) dx = ϕ∗

j (a)ϕp(a)�a + o(�a)

(ψk,�F̂2(b)ψq) =
∫ b+�b

b

ψ∗
k (x)ψq(x) dx = ψ∗

k (b)ψq(b)�b + o(�b)
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we finally obtain the joint probability density function p/(x2, t; x1, 0) for the joint probability
defined in (49)

p/(x2, t; x1, 0) =
∑
jk

∑
pq

e−i(Eq−Ek)t/h̄(/, ϕjψk)(ϕpψq,/)ϕ
∗
j (x1)ϕp(x1)ψ

∗
k (x2)ψq(x2). (51)

A classical calculation shows now that the total quantum correlation for the mixture, at the
continuous limit for the two partitions, is in fact

R/
12(t) =

∫ +∞

−∞

∫ +∞

−∞
x1x2p/(x2, t; x1, 0) dx1 dx2

=
∑
jk

∑
pq

(/, ϕjψk)(ϕpψq,/)e
−i(Eq−Ek)t/h̄(ϕj , X̂1ϕp)(ψk, X̂2ψq)

= (/X̂1(0)X̂2(t)/). (52)

To now obtain the right SM description we must apply SM1 to the evolution of each pure
state /�ai (t) constituting the mixture: this will give rise, by the Nelson map, to a family

of two-component Nelson diffusions ξ/�ai (t) = (ξ
/�ai

1 , ξ
/�ai

2 ) each with its own particular
two-component drift field(

b
/�ai

1

b
/�ai

2

)
= h̄

m

(
Re

(
∂1/�ai

/�ai

)
+ Im

(
∂1/�ai

/�ai

)
Re

(
∂2/�ai

/�ai

)
+ Im

(
∂2/�ai

/�ai

)
)

i ∈ N . (53)

For every branch of the mixture we then have, recalling (8), the basic equality

P/(X2(t) ∈ (b, b + �b]|X1(0) ∈ (ai, ai + �ai])

= P/�ai
(ξ

/�ai

2 (t) ∈ (b, b + �b]|ξ/�ai

1 (0) ∈ (ai, ai + �ai]). (54)

We are then in a position to exploit again (49) and the subsequent purely mathematical
manipulations. Then, recombining in a purely classical way the contributions to the total
correlation coming from the different branches of the mixture and going to the continuous
limit, as done from (49) to (52), we obtain the oscillating correlation (45).

It may be worthwhile to stress that, even if the averaged object R/
12(t) exists in the

continuous limit, the Nelson map cannot be directly applied in the same limit since the limit
of the square root of the initial density, for every branch of the mixture, would not belong
to L2(R3N). This is in nice agreement with the fact that M4 is actually stated for a finite
interval. We conclude this section by observing that we have just described a particular effect
of the entanglement on the observed correlations, at different times, for measurements on
two separate subsystems. We stress again that, due to the collapse of the initial state /, the
mathematical correlations of the two-component Nelson process associated with the purely
dynamical evolution of/ does not represent any statistical object related to actually performed
experiments. To fully appreciate the discrepancy between quantum correlations and the just
mentioned ‘virtual correlations’ we report in the appendix the explicit expressions for the
unperturbed Nelson process and its correlations which, as expected, go exponentially fast to
zero for the time going to infinity.

5. Discussion and conclusions

We have worked out an example of entanglement within SM starting on a well defined logical
basis and fully rigorously from a mathematical point of view. This leaves no doubt of the
fact that entanglement is well described in this stochastic framework (see [23] for pioneering
work). To briefly discuss locality we first recall here some well known characteristics of
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Bohm mechanics which are conserved even in SM as a hidden variable theory, since they do
not depend on the type of configurational trajectories which are introduced but just on their
‘existence’.

(1) The positions of all the particles constituting a system can be considered as having a
precise value independent of the occurrence of a measurement, and that without violating
the basic axioms of QM (with the exception of the statement on the completeness of the
theory). This in particular, being true also in the case of superpositions of pure states,
gives an answer to all the paradoxes of the Schrödinger’s cat type.

(2) The same form of microreality seems not to be true for all the observables (see, for example,
the argument about spin 1 variables in [24]).

(3) The hidden variables are in general not accessible since the observation of a trajectory
associated with a solution of the Schrödinger equation would need infinitely precise and
non-demolitive measurements at every time.

Thus the configurational trajectories, and consequently the trajectories in the three dimensional
space described by every particle constituting the system, have physical meaning, but only in
the sense of point 1.

Of course both the ordinary differential equations (21) of the Bohm theory and the
stochastic differential equations (15) of the Nelson theory are written in terms of a velocity
field (vψ and bψ respectively), whose components depend in general on the positions of all
the particles constituting the system unless the state is factorized. Thus, as it is well known,
SM shares with the Bohm theory a particular sort of non-locality at the level of trajectories.
On the other hand, since these are not accessible, such a fact does not necessarily require
a drastic change in the usual philosophical attitude. The situation is different as far as the
celebrated Bell locality is concerned. Such a form of locality constraint requires a factorization
of joint probabilities for results of experiments performed on space-like separated systems. The
requirement yields Bell’s inequality, which is violated by QM in various examples, as well as
in experiment [25]. Since the violation of Bell’s inequality comes from the basic axioms of
QM which are not contradicted by SM, we obtain that SM also violates Bell’s inequality in the
case of entangled systems: such a violation is at the level of correlations. Since correlations
are in fact observed in statistical experiments, such a violation seems to pose one of the
most challenging problems to any hidden variables theory. This point would be particularly
interesting in rediscussing the dynamical part of SM since, at variance with Bohm theory, the
aim of SM is firstly to provide new principles which independently ‘produce quantization’.
We stress that the violation of Bell’s locality looks like an intrinsically statistical phenomenon
(it cannot produce superluminal signals!) and thus a stochastic framework should be the most
appropriate for facing such a challenging problem.

As a final point we would like to discuss the concept of deterministic and stochastic hidden
variables. It is apparent that there are no conceptual differences between λB and λN of (20)
and (23); hence whether the theory is deterministic or stochastic depends on the interpretation.
Bohm’s theory is called deterministic since all the probabilistic aspects are reduced to the
ignorance of the initial positions, which in any case have a precise value, although they are
not accessible (in other words one could say that the probabilities are purely epistemic). On
the other hand the Nelson approach is called stochastic since the trajectory depends also on
the random realization of the Brownian motion W (t). Now, if such a realization is interpreted
as describing some (unknown) physical effect (see, for example, the quantum fluctuations
quoted in [5]), the situation is the same as for the Bohm theory and all the probabilistic aspects
are originated by some sort of ignorance. In this sense SM would also be a deterministic
hidden variable theory, but if the interpretation is that the introduction of the Brownian motion
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W (t) is not more deeply analysable, but is rather a purely mathematical device and does not
represent any physical (unknown) phenomenon, then the theory is not deterministic in the
above explained sense. One can of course notice that the first interpretation of SM would fit
with the celebrated Einstein sentence ‘God does not play dice’. It is worth mentioning that
there is some current research, starting from different, non-trivial conjectures, on the origin
of the quantum fluctuations: see, for example, [26–28]. Clearly the just quoted works are in
principle the most ambitious: indeed not only do the authors accept the idea that QM is not
complete and introduce hidden variables, but, in addition, they study the origin of quantization
as a physical (mysterious) phenomenon leading in particular to the violation of Bell’s inequality
(see in particular [28]).
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Appendix A. The correlations of the unperturbed Nelson process

The aim of this appendix is to show in an explicit way that, when no actual measurement is
performed at time 0 on one of the two entangled oscillators of section 4, the SM forecasts an
exponential time decay of the two time correlations. First of all let us recall a few classical
results which will be exploited in the following. Let us consider a one-dimensional quantum
harmonic oscillator whose Schrödinger equation is

ih̄∂tψ = − h̄2

2m
∂2
xψ +

mω2x2

2
ψ; (A.1)

it is well known (see for example [29]) that the (non-normalizable) solution of (A.1)
corresponding to the initial condition

ψ(x, 0+) = δ(x − y) (A.2)

has the form

ψ(x, t |y, 0) = ei[(x2+y2) cos2 ωt−2xy]/4σ 2
0 sinωt√

4π iσ 2
0 sinωt

σ 2
0 = h̄

2mω
(A.3)

and the corresponding velocity field is

b(x, t) = A(t) + B(t)x A(t) = − ωy

sinωt
B(t) = ω

tanωt
. (A.4)

The knowledge of (A.3) allows us now to calculate the solutions of (A.1) with a Gaussian
initial condition (with σ in general different from σ0):

ψ(x, 0+) = e−(x−y)2/4σ 2√
σ
√

2π
. (A.5)

These solutions have the form

ψyσ (x, t) = R(x, t)e−iS(x,t)/h̄ (A.6)

where

R(x, t) = e−(x−µ(t))2/4σ 2(t)√
σ(t)

√
2π

µ(t) = y cosωt

σ 2(t) = σ 2
0

α2
(α4 cos2 ωt + sin2 ωt) α = σ

σ0

(A.7)
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S(x, t) = h̄

2
arctan

(
tanωt

α2

)
+
h̄ sinωt

4σ 2
0

x2(α4 − 1) cosωt + 2xy − y2 cosωt

α4 cos2 ωt + sin2 ωt
. (A.8)

The corresponding velocity field is

b(x, t) = A(t) + B(t)x A(t) = α2 cosωt − sinωt

α4 cos2 ωt + sin2 ωt
ωy

B(t) = − (α4 − 1) cosωt sinωt + α2

α4 cos2 ωt + sin2 ωt
ω.

(A.9)

Let us consider the Hamiltonian

Ĥ = 1

2m
(P̂ 2

1 + P̂ 2
2 ) +

mω2

2
(X̂2

1 + X̂2
2). (A.10)

We want to analyse the time evolution of the initial state (40) as ruled by the Hamiltonian (A.10)
and with no measurement at time 0. We put σ1 = σ2 = σ , so that our initial wavefunction will
be

/(x1, x2; 0) = e−x·Ax/4√
2πσ 2

√
1 − r2

A = R
−1 = 1

σ 2(1 − r2)

(
1 −r

−r 1

)

R = σ 2

(
1 r

r 1

)
(A.11)

and the wave equation becomes

ih̄∂t/ = − h̄2

2m
(∂2

1 + ∂2
2 )/ +

mω2

2
(x2

1 + x2
2 )/. (A.12)

Thanks to the circular symmetry (ω1 = ω2 = ω) we can perform a rotation of x1, x2 axes,
which, with an invariant form of (A.12), allows us to rewrite the initial state (A.11) as a
factorized wavefunction. Since the two harmonic oscillators are dynamically uncoupled, this
factorization makes the evolution completely independent in the two variables x1 and x2. It is
easy to see that the rotation

y = Ox O = 1√
2

(
1 −1
1 1

)
(A.13)

transforms the wavefunction into

:(y1, y2; 0) = e−y·By/4√
2πσ 2

√
1 − r2

= ϕ1(y1, 0)ϕ2(y2, 0)

ϕ1(y1, 0) = e−y2
1/4σ 2

1√
σ1

√
2π

ϕ2(y2, 0) = e−y2
2/4σ 2

2√
σ2

√
2π

σ1 = σ
√

1 − r2 σ2 = σ
√

1 + r2

B = OAO
T = 1

σ 2

( 1
1−r 0
0 1

1+r

)

B
−1 = ORO

T = σ 2

(
1 − r 0

0 1 + r

)

(A.14)

while the wave equation (A.12) still has the same form in the new coordinates. As a
consequence ϕ1 and ϕ2 evolve independently in ϕ1(x1, t) and ϕ2(x2, t), each following (A.6)
with its own parameters σ1, σ2, α1 andα2. From the evolution:(y1, y2; t) = ϕ1(x1, t)ϕ2(x2, t)
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we recover the evolution/(x1, x2; t) in the original coordinates by means of the inverse rotation
x = O

T y.
By SM1 we can associate Nelson vector processes with both/ and:: let us denote them

respectively by ξ = (ξ1, ξ2) and η = (η1, η2). Their components will be connected by the
rotations

η = Oξ ξ = O
T η. (A.15)

Clearly η1(0) and η2(0) are independent, Gaussian and respectively distributed as N (0, σ 2
1 )

and N (0, σ 2
2 ). Moreover their evolution is completely independent (the stochastic differential

equations are not coupled), so η1(t) and η2(t
′) remain independent, Gaussian and respectively

distributed as N (0, σ 2
1 (t)) and N (0, σ 2

2 (t
′)) (σ 2

1 (t) and σ 2
2 (t

′) are of the form (A.7) with
α1 = σ1/σ0 and α2 = σ2/σ0). Now, since Eη1(0)η2(t) = Eη1(0)Eη2(t) = 0 and
Eη2(0)η1(t) = 0, keeping account of (A.15) we have

Eξ1(0)ξ2(t) = 1
2 E[(η1(0) + η2(0))(−η1(t) + η2(t))] = 1

2 [Eη2(0)η2(t)− Eη1(0)η1(t)].

(A.16)

As a consequence we can study Eξ1(0)ξ2(t) by analysing Eη1(0)η1(t) and Eη2(0)η2(t).
Since the two processes η1 and η2 have a completely identical behaviour (except for the

value of one parameter, their initial variance) let us drop the indices 1 and 2 and let us calculate
Eη(0)η(t) for a process η(t) such that η(0) = N (0, σ 2), and such that the drift velocity field
is

b(y, t) = yB(t)

B(t) = −ω(α
4 − 1) sinωt cosωt + α2

α4 cos2 ωt + sin2 ωt
= −ω 2α2 + (α4 − 1) sin 2ωt

(α4 + 1) + (α4 − 1) cos 2ωt

α = σ

σ0
.

(A.17)

The stochastic differential equation (15) will take the form

dη (t) = b(η(t), t) dt + dW (t) = B(t)η(t) dt + dW (t) (A.18)

or in integral form

η(t) = η(0) +
∫ t

0
B(s)η(s) ds + W(t). (A.19)

Now from

η(0)η(t) = η2(0) +
∫ t

0
B(s)η(0)η(s) ds + η(0)W(t) (A.20)

we immediately obtain

Eη(0)η(t) = Eη2(0) +
∫ t

0
B(s)Eη(0)η(s) ds. (A.21)

Hence, by differentiating, we find

d

dt
Eη(0)η(t) = B(s)Eη(0)η(s) (A.22)

with the initial condition Eη2(0) = σ 2, and finally

Eη(0)η(t) = σ 2e
∫ t

0 B(s) ds . (A.23)
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The fact that the right-hand side of (A.23) will go exponentially fast to zero for t → +∞
would be apparent if B(t) < 0 for every t > 0; but this happens only if

√√
2 − 1 < α <√√

2 + 1. However, it is easy to show from (A.17) that in general we have

Eη(0)η(t) = σ 2

√
(α4 + 1) + (α4 − 1) cos 2ωt

2α4
e− arctan(α−2 tanωt) (A.24)

and a simple geometrical argument proves that (A.24) for t → +∞ is infinitesimal, of the
same order as e−ωt .
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